Printed Page:- 04		Subject Code:- ACSE0504 Roll. No:			
		Kon. No.			
NO	DIDA INSTITUTE OF ENGINEERING A	AND TECHNOLOGY, GREATER NOIDA			
	(An Autonomous Institute Af	filiated to AKTU, Lucknow)			
	B.Te				
	SEM: V - THEORY EXAL Subject: Com	MINATION (2023 - 2024)			
Time:	3 Hours	Max. Marks: 100			
	Instructions:				
	· · · · · · · · · · · · · · · · · · ·	paper with the correct course, code, branch etc.			
		ns -A, B, & C. It consists of Multiple Choice			
_	ns (MCQ's) & Subjective type questions.				
	num marks for each question are indicate ate your answers with neat sketches when	_			
	ne suitable data if necessary.	tever necessary.			
	rably, write the answers in sequential order	er.			
	eet should be left blank. Any written mat	erial after a blank sheet will not be			
evaluate	d/checked.				
	227				
SECTIO	<u>DN-A</u>	20			
1. Attem	pt all parts:-				
1-a.	1-a. Grammar of the programming is checked at phase of compiler. (CO1) 1				
(;	a) Syntax analysis				
(1	b) Semantic analysis				
(0	c) Code generation				
(d) Code optimization				
1-b.	What is compiler? (CO1)	1			
(;	a) A compiler is calculating device wh	nich is providing very efficient execution			
(1	b) A compiler is a general purpose lang	guage providing very efficient execution			
(0	c) A compiler converts the whole of a	higher level program code into machine code in			
O	one step				
(d) A compiler does a conversion line b	y line as the program is run			
1-c.	Parsing is categorized into how many ty	ypes?(CO2)			
(;	a) 2				
(1	b) 3				
(c) 1				
(d) 4				
1-d.	CLR parsing is a type of	(CO2)			
(;	a) Bottom-Up				
·	b) Top-Down				

	(c)	Both Bottom-Up and Top-Down	
	(d)	None of above	
1-e.	I	n the compiler, the function of using intermediate code is (CO3)	1
	(a) com	to increase the chances of re-using the machine-independent code optimizer in otl pilers	ner
	(b)	to improve the register allocation	
	(c)	to increase the error reporting & recovery	
	(d)	to make semantic analysis easier	
1-f.	T	he minimum number of variable required in the Three Address code (CO3)	1
	(a)	3	
	(b)	4	
	(c)	2	
	(d)	5	
1-g.	A	ctivation Record is a (CO4)	1
	(a)	Attibute	
	(b)	Non-Contiguous block of memory	
	(c)	Contiguous block of memory	
	(d)	None of above	
1-h.	C	ompiler makes use of (CO4)	1
	(a)	Symbol tree Symbol Table Symbol list	
	(b)	Symbol Table	
	(c)	Symbol list	
	(d)	None of the above	
1-i.	O	ptimization can be categorized broadly into types (CO5)	1
	(a)	2	
	(b)	3	
	(c)	4	
	(d)	5	
1-j.		fragment of code that resides in the loop and computes the same value at each eration is called a (CO5)	1
	(a)	Induction analysis	
	(b)	Strength reduction	
	(c)	loop-invariant code	
	(d)	None of the above	
2. Att	tempt a	all parts:-	
2.a.	D	refine Finite State automata as 5-Tuple. (CO1)	2
2.b.	W	That is the difference between LR(0) and SLR(1) parsing? (CO2)	2
2.c.	D	refine the term Annotating in terms of annotated parse tree. (CO3)	

2.d.	Explain the main purpose of using symbol table. (CO4)	2
2.e.	What are the rules to determine the leaders of basic blocks? (CO5)	2
SECTI	ON-B	30
3. Ansv	ver any <u>five</u> of the following:-	
3-a.	Classify the concepts of compiler and Interpreter. (CO1)	6
3-b.	Explain language processing system with neat diagram (CO1)	6
3-c.		6
	Describe recursive descent parser with example.(CO2)	
3-d.	Differentiate between CLR and LALR parsing, Explain with an example.(CO2)	6
3.e.	Define term array also write difference between one dimension and two dimension array with example.(CO3)	6
3.f.	Draw and explain a diagram to show the contents of activation records (CO4)	6
3.g.	Explain briefly about constant folding with suitable example. (CO5)	6
SECTI	ON-C	50
4. Ansv	ver any <u>one</u> of the following:-	
4-a.	Describe the Cross Compiler with example ? Explain the analysis-synthesis model of compilation. (CO1)	10
4-b.	Define term Lexeme ,Token and Pattern. also Explain the role of lexical analyzer in details.(CO1)	10
5. Ansv	ver any <u>one</u> of the following:-	
5-a.	Write operator precedence parsing algorithm. Consider the following grammar:	10
	(CO2)	
	E->E+T E->T	
	T->T*F	
	T->F	
	F->(E)	
	F->id Construct the operator precedence table to parse string id+(id*id).	
5-b.	Define parser and Explain the Top down and Bottom Up parser In details. (CO2)	10
	wer any one of the following:-	10
6-a.	How is the switch case statement translated into three address code? Illustrate with	10
0-a.	example. (CO3)	10
6-b.	Define Three Address Code. also Discuss the representations of three address	10
	code. (CO3)	
	Write the quadruples, triples, Indirect Triples for the following expression $(x + y)*(y + z) + (x + y + z)$	
7. Ansv	wer any <u>one</u> of the following:-	
7. 7 kms v 7-a.	Define lexical and semantic errors? How lexical errors are different from semantic	10
, u.	errors? Explain with example.(CO4)	10

7-b. Explain the different Data Structures that can be used to implement Symbol tables.(CO4)

10

- 8. Answer any one of the following:-
- 8-a. Define the terms basic blocks, flow graphs and loop in flow graph. Generate the basic block and flow-graphs for the following expressions (CO5)
 - 1) r = 1
 - 2) c = 1
 - 3) t1 = 10 * r
 - 4) t2 = t1 + c
 - 5) t3 = 8 * t2
 - 6) t4 = t3 88
 - 7) a[t4] = 0.0
 - 8) c = c + 1
 - 9) if $c \le 10 \text{ goto } (3)$
 - 10) r = r + 1
 - 11) if $r \le 10$ goto (2)
 - 12) r = 1
 - 13) t5 = c 1
 - 14) t6 = 88 * t5
 - 15) a[t6] = 1.0
 - 16) r = r + 1
 - 17) if $r \le 10$ goto (13)
- 8-b. Explain Global data flow analysis with example.(CO5)